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Abstract While chemical shift prediction has played an

important role in aspects of protein NMR that include

identification of secondary structure, generation of torsion

angle constraints for structure determination, and assign-

ment of resonances in spectra of intrinsically disordered

proteins, interest has arisen more recently in using it in

alternate assignment strategies for crosspeaks in 1H–15N

HSQC spectra of sparsely labeled proteins. One such

approach involves correlation of crosspeaks in the spec-

trum of the native protein with those observed in the

spectrum of the denatured protein, followed by assignment

of the peaks in the latter spectrum. As in the case of dis-

ordered proteins, predicted chemical shifts can aid in these

assignments. Some previously developed empirical for-

mulas for chemical shift prediction have depended on basis

data sets of 20 pentapeptides. In each case the central

residue was varied among the 20 amino common acids,

with the flanking residues held constant throughout the

given series. However, previous choices of solvent condi-

tions and flanking residues make the parameters in these

formulas less than ideal for general application to dena-

tured proteins. Here, we report 1H and 15N shifts for a set of

alanine based pentapeptides under the low pH urea dena-

turing conditions that are more appropriate for sparse label

assignments. New parameters have been derived and a Perl

script was created to facilitate comparison with other

parameter sets. A small, but significant, improvement in

shift predictions for denatured ubiquitin is demonstrated.

Keywords Sparse labeling � Disordered proteins �
Denatured proteins � NMR � Resonance assignments

Introduction

While we intend to focus here on the use of chemical shift

prediction in the assignment of resonances in sparsely

labeled proteins, chemical shift prediction has a long his-

tory in the NMR structural biology community, beginning

with the identification of secondary structure in folded

proteins (Wishart et al. 1995a). These early efforts have

evolved into improved methods for secondary structure

analysis (Camilloni et al. 2012), and they have become

important contributors to restraints for torsion angles in

protein structure determination (Shen et al. 2009). Chem-

ical shift is also one source of structural information that is

accessible in larger systems (Takeuchi et al. 2007), and it is

becoming an increasingly important parameter in the

facilitation of computational prediction of large protein

structures using sparse data sets (Lange et al. 2012; Raman

et al. 2010). To make use of chemical shifts in secondary or

tertiary structure determination, good reference shifts from

random coil or disordered regions of proteins are essential.

This contributed some of the initial motivation for tabu-

lating shifts and using the data to derive sequence depen-

dent correction factors to random coil chemical shifts

(Wang and Jardetzky 2002a; Wishart et al. 1995a). These

same factors can prove useful in new assignment strategies.

One area where assignment by sequence dependent shift

prediction has proved useful is in studies of intrinsically

disordered proteins. It is now recognized that intrinsically

disordered regions in proteins play important roles in bio-

logical function (Dyson and Wright 2005; Peti et al. 2001;

Rezaei-Ghaleh et al. 2012). NMR is one of the few ways of
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monitoring these regions and this has heightened interest in

making assignments for these regions (Camilloni et al.

2012; Marsh et al. 2006). In disordered regions chemical

shifts are dictated largely by amino acid type and the

nearest neighbors in the protein sequence. This has led to

several attempts to produce chemical shift prediction tools

based on assignments of a series of synthetic peptides

(Schwarzinger et al. 2001; Kjaergaard and Poulsen 2011),

along with tools based on available data for coil regions of

proteins in the PDB (Wang and Jardetzky 2002b), or data

on denatured or intrinsically disordered proteins that have

been deposited in the BMRB (Camilloni et al. 2012; De

Simone et al. 2009; Tamiola et al. 2010). Here we present a

further refinement of an approach based on a series of

synthetic peptides, selected to better represent conditions

relevant to the use of chemical shift prediction as an

assignment tool for sparsely labeled large proteins.

With the increasing awareness of the importance and

prevalence of glycosylation in eukaryotic proteins, in par-

ticular, and large proteins in general, we have been trying to

address the NMR challenges these present. Considering that

eukaryotic cell lines need to be utilized for expressing

properly glycosylated proteins, and that these cell lines

prefer supplementation with isotopically labeled amino

acids, labeling with 13C and 15N can be prohibitively

expensive, especially if one insists on uniform isotopic

labeling (Dutta et al. 2012; Gossert et al. 2011). Furthermore,

eukaryotic hosts do not tolerate the perdeuteration that is

essential for maintaining resolution in uniformly labeled

large proteins. Using single or small sets of amino acids as a

source of sparse isotope labels is attractive in ameliorating

some of the expense and resolution requirements imposed

with uniform labeling. Implementation of single amino acid

labeling does, however, require abandoning commonly used

triple resonance assignment strategies.

We therefore have pursued development of an alterna-

tive approach to assignment (Nkari and Prestegard 2009;

Feng et al. 2007), the most recent version of which requires

assignment of the 1H–15N HSQC spectrum of the denatured

protein. The published version of the recent strategy relies

on correlating crosspeaks in 1H–15N HSQC spectra of

native proteins to the crosspeaks in the spectra of the same

protein in the denatured state, with assignment of the

denatured spectrum ultimately achieved by correlating

denatured spectrum crosspeaks with those in spectra of

digested, separated, and mass spectrometrically identified

peptides (Nkari and Prestegard 2009). It is clear that the

latter step might be eliminated if robust, sequence based,

chemical shift prediction tools for the denatured protein

existed. This is the goal of the present effort.

As our systems are denatured by dissolution in 8 M

urea, pH 2.5, the assignment tool introduced by Schwarz-

inger et al. (2001) is particularly appealing. This tool is

based on data from spectra of a series of Ac-Gly-Gly-Xxx-

Gly-Gly-NH2 host–guest peptides dissolved in the same

denaturing buffer we use, where Xxx is one of the 20

common amino acids inserted in an all Gly host peptide. It

is impractical to synthesize pentapeptides, or even tripep-

tides representing all possible amino-acid sequences.

Hence, the Gly-Gly host sequence was taken to be repre-

sentative of any flanking region in a disordered protein, and

the effects on glycine residues adjacent to (or two removed

from) Xxx, on changing from Xxx = Gly to Xxx =

another amino acid, are assumed to be the same as they

would be, had the observed glycine been any amino acid.

This allows parameters in a chemical shift prediction for-

mula of the following form to be determined from pertur-

bations to glycine chemical shifts in a limited set of

peptides:

di ¼ dref Xxxð Þ þ di�2 Yyyð Þ þ di�1 Yyyð Þ þ diþ1 Yyyð Þ
þ diþ2 Yyyð Þ

ð1Þ

Here dref(Xxx) is the reference chemical shift for the amino

acid of interest and the remaining d(Yyy) terms are cor-

rection factors for amino acids found in the protein

sequence 1 and 2 positions removed toward the N and C

termini, respectively.

There have been some recent attempts to avoid the

synthesis requirements of the host–guest strategy and its

underlying assumptions, and to extend sequence specific

parameterization by mining the growing number of

deposited chemical shifts for denatured proteins and pro-

teins with intrinsically disordered regions (Camilloni et al.

2012; Tamiola et al. 2010). A database approach does offer

much promise as depositions increase in the future, and

there is an inherent advantage in eliminating host peptide

bias in guest reference shifts. However, our interest in a

particular set of denaturing conditions, and the currently

limited number of depositions under these conditions,

make a procedure based on the host–guest strategy worthy

of further exploration.

Hence, we accept the general approach of Schwarzinger

et al., but are concerned that glycine may not be the best

choice for a representative amino acid because of the

unique aspects of the distribution of allowed torsional

conformers (represented in a Ramachandran map) for

glycine in contrast to those for many other amino acids.

This limitation has also been recognized by others.

Recently (Kjaergaard and Poulsen 2011) synthesized a

series of peptides using glutamine as a host. However, their

interest was primarily in intrinsically disordered proteins,

and denaturants were not used in their studies. Here we

present a set of data, and a prediction tool, based on

Ac–Ala–Ala–Xxx–Ala–Ala–NH2 peptides studied under
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the denaturing conditions used in our sparse label assign-

ment strategy. Our choice of alanine as a host amino acid

was made without the benefit of arguments presented in the

Kjaergaard paper and may have some limitations. Alanine

is known to have a preference for a significant portion of

polyproline II (PPII) structure in host–guest systems based

on glycine and studied in aqueous solution (estimated at

82 % PPII), but all amino acids except histidine induce

50 % or more propensity for this structure (Shi et al. 2006).

The presence of urea is also known to affect propensities

for various structures (Bennion and Daggett 2003),

although recent studies suggest that the % of PPII, for at

least a glycine host–guest system, does not change signif-

icantly (Li et al. 2011). It is nevertheless clear that recently

generated Ramachandran maps support the choice of ala-

nine over glycine (Ting et al. 2010). We present compar-

isons of predictions made with our tool to those made with

other tools for denatured ubiquitin, a protein representative

of our interest in assignment of denatured proteins, to

document possible advantages of prediction parameters

based on an alternate host amino acid.

Materials and methods

Synthesis of the peptides was carried out with the solid-phase

methodology based on a-amino group Fluorenylmethylox-

ycarbonyl (Fmoc) protection. Fmoc protected amino acid

building blocks with the conventional sidechain functional

group protections compatible with this chemistry were used

as needed. The Fmoc protected amino acids were obtained

from Novabiochem, as was the Rink amide resin support.

Peptides were assembled on a CEM Liberty microwave-

assisted automated peptide synthesizer using standard pro-

tocols in the software. Syntheses were run at 0.1 mmol scale.

4-Methyl piperidine, 20 % in dimethylformamide (DMF)

was used for Fmoc deprotection, in two cycles, the first for

30 s with microwave heating, and the second for 5 min.

Couplings, at fivefold excess of Fmoc amino acid to a-amino

sites on the resin, were carried out for 5 min with microwave

heating to 75 �C and facilitated by 1-hydroxybenzotriazole

(HOBt)/O-Benzotriazole-N,N,N0,N0-tetramethyl-uronium-

hexafluoro-phosphate (HBTU) (Novabiochem) and with

diisopropylethylamine (DIEA) (Sigma-Aldrich) as the base.

Nitrogen gas bubbling was used for agitation of the resin

during deprotection and coupling steps. The peptide resin as

recovered from the synthesizer had the N-terminal Fmoc

group already removed. The peptide resins were then man-

ually treated with 20 % acetic anhydride in DMF to acetylate

the amino terminus. Release of the peptides from the resin

and removal of the chain protecting groups was achieved by

treatment with trifluoroacetic acid (TFA)/triisopropylsilane

(TIPS)/water 95/2.5/2.5, or 88/5/5/2 TFA/phenol/Water/

TIPS. The cleavage solution in which the peptide was dis-

solved was recovered from the resin by filtration with several

additional washes with TFA. The filtrates containing the

Ac–Ala–Ala–Xxx–Ala–Ala–NH2 peptides were partially

evaporated under vacuum on a rotary evaporator and the

remaining solution either added to anhydrous diethyl ether at

0 �C to form a peptide precipitate or diluted with 20 % acetic

acid and extracted with chloroform and ether. In the case of

precipitation, the precipitate was collected after centrifuga-

tion, dissolved in water, and lyophilized. When extraction

was employed, the aqueous phase containing the peptide was

lyophilized. Further purification was done with C-18 reverse

phase HPLC using a gradient of acetonitrile in water with

0.1 % TFA. Solvents and reagents other than those already

indicated were reagent grade from Sigma-Aldrich, except for

the acetonitrile which was HPLC grade. 10 mgs or more of

each of the peptides were obtained and used for the NMR

studies. Except for the Ac–Ala–Ala–Ala–Ala–Ala–NH2

reference peptide, for which resolution of NMR resonances

proved to be a problem, no enrichment in 15N was required.

For the Ac–Ala–Ala–Ala–Ala–Ala–NH2 peptide the cen-

tral residue was 15N enriched (Sigma-Aldrich Isotope

laboratories).

Peptides were dissolved in a 90 % H2O, 10 % D2O, 8 M

urea, 1 mM DSS, solution adjusted to pH 2.5. Concentra-

tions ranged widely depending on yields and solubilities of

peptides, but averaged *20 mM. HSQC spectra were

collected on a Varian 800 MHz spectrometer system using

a standard sequence (gNHSQC) from the Varian BioPack.

Data were typically acquired with 20–30 indirect points

and 2,048 direct points with a recycle time of 2 s over a

period of 10–15 min for a 20 mM sample. Data were

processed using a 90� shifted sinbell function for weighting

and zero filling to 256 points in the indirect dimension.

Referencing was initially calculated using the frequency of

the HDO signal, but later corrected to values using the DSS

methyl proton resonance, following the method of Wishart

et al. (1995b). 2D 1H–1H ROESY, and 1H–1H TOCSY

spectra were acquired for the purpose of assigning 1H–15N

HSQC crosspeaks. For typical 20 mM samples these were

acquired with 128–256 indirect points and 2,048 direct

points with a recycle time of 2 s over a period of 3–8 h,

using mixing times of 65 ms for TOCSY and 300 ms for

ROESY respectively.

Results

Spectra for peptides were assigned using the distinct NOE

connection of an amide resonance to the acetyl methyl for

residue 1 and NOE connection of the amide resonance of

residue 2 to the alpha and/or beta protons of residue 1. The

central amino acid, Xxx, usually displayed a distinct alpha
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resonance which could be connected to its own amide and

side chain resonances in the TOCSY spectrum, but not to

one of the alanine methyl groups. The amide proton reso-

nance was also in many cases connected to an HSQC peak

with a unique nitrogen chemical shift. The residue 4 ala-

nine amide could be connected to the alpha and/or beta

resonances of residue Xxx and the residue 5 alanine could

be assigned by default as well as by NOE to the NH2

protons of the C-terminal carboxamide group. Once several

peptides were assigned, the relatively invariant HSQC peak

positions for the 1 and 5 positions were used to facilitate

the assignment process. In the case of the (Ala)5 peptide,

the uniquely enriched central position was used to identify

its crosspeak and facilitate connections to the 2 position.

Chemical shifts for 1H and 15N resonances of all pep-

tides studied are given in Table 1. Note the relative

invariance of the amide resonances for position A1 (root

mean square deviation (RMSD) of ±0.022 ppm in 1H and

±0.29 ppm in 15N). The largest variations are at the A4

position (RMSDs are 0.121 and 1.02 ppm for 1H and 15N

respectively). This is not surprising as the amide for this

alanine is closest to the side chain of the Xxx residue. What

is surprising is that there are some significant deviations in

the amide proton resonances of the A5 residue. A few are

larger than the RMSD of the A4 values (mostly aromatic

residues, -0.088 for Phe, -0.108 for Tyr, 0.153 for His,

and -0.268 for Trp). While some prediction methods have

focused on just the nearest neighbors, this observation

suggests that addition of a term from the A5 variations

could be important. These anomalies have been noted

previously (Schwarzinger et al. 2001) and have been

attributed to the tendency of aromatic sidechains to bend

under the backbone and allow the aromatic ring to interact

with the amide hydrogen of the i ? 2 (A5) residue (Ke-

mmink and Creighton 1993). The possibility of preserving

other long range conformational preferences, even in a

denaturing solvent also does exist (Bennion and Daggett

2003; Shi et al. 2006). Although the postulated aromatic

interaction is not with the terminal amide (the peptides

used terminate with an NH2 group, not a carboxylic group),

it is possible that these interactions are further promoted by

the proximity of the carboxy terminus and the lack of steric

limitations from an i ? 3 (A6) sidechain. If this were the

origin of the effect, use of a correction term from the A5

data would be inappropriate. In our case, inclusion of the

term from the A5 data shows a slight improvement in

predictions.

Conversion of position specific differences between

chemical shifts for Xxx = Ala and Xxx = other amino

acids to correction factors for prediction of chemical shift

Table 1 Amide 1H and 15N chemical shifts for AlaAlaXxxAlaAla peptides in 8 M urea, pH 2.5

Residue Observed chemical shifts

1HN A1-1HN A2-1HN A4-1HN A5-1HN 15N A1-15N A2-15N A4-15N A5-15N

Ala 8.29 8.22 8.4 8.25 8.25 123.2 129.5 123.1 123.1 123.5

Arg 8.32 8.19 8.49 8.39 8.29 120.4 129.1 123 125.5 123.9

Asn 8.36 8.22 8.41 8.26 8.31 117.4 129.5 123.1 124.4 122.8

Asp 8.38 8.21 8.38 8.23 8.17 117.4 129.1 122.7 124.4 123.1

Cys 8.33 8.22 8.41 8.45 8.25 117.4 129.6 122.5 126.4 123.3

Gln 8.32 8.22 8.38 8.33 8.26 119.2 129.4 122.8 125.1 123.6

Glu 8.27 8.21 8.38 8.32 8.24 119 129.6 122.8 124.1 123.6

Gly 8.32 8.23 8.41 8.18 8.24 107.8 129.7 123 123.7 123.2

His 8.51 8.23 8.41 8.45 8.38 117.3 129.3 122.7 124.8 124.2

Ile 8.1 8.2 8.38 8.37 8.23 120.4 129.9 123.4 126.2 124.1

Leu 8.17 8.2 8.35 8.31 8.21 121.4 129.5 122.7 124.9 123.7

Lys 8.22 8.16 8.31 8.3 8.25 120.4 129.5 122.7 125.1 123.6

Met 8.33 8.22 8.39 8.34 8.27 119.4 129.3 122.7 125.1 123.7

Phe 8.09 8.2 8.32 8.2 8.14 118.8 129.5 122.5 125.5 123.8

Pro – 8.18 8.42 8.34 8.28 – 129.3 124.3 124.3 123.6

Ser 8.27 8.23 8.44 8.37 8.2 114.1 130.4 123.1 126 123.4

Thr 8.06 8.21 8.44 8.3 8.22 112.3 129.4 122.9 125.8 123.5

Trp 7.95 8.16 8.31 7.92 7.96 119.2 129.3 122.7 125.4 123.3

Tyr 8.04 8.18 8.32 8.16 8.12 118.9 129.4 122.6 125.7 123.8

Val 8.1 8.23 8.41 8.42 8.28 119.1 129.4 123.2 127.6 124.1

RMSD 0.143 0.022 0.047 0.121 0.086 3.477 0.285 0.404 1.023 0.351
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requires association of i ? 2, i ? 1, i - 1, and i - 2

sequence positions with changes in shifts of A1, A2, A4,

and A5 respectively. The correction factors for the twenty

peptides we studied are given in Tables 2 and 3 along with

comparisons to correction factors from other studies. In the

latter cases published factors had to be adjusted for the fact

that the corrections are in each case relative to a different

substitution; in our case Xxx for Ala, in other cases Xxx for

Table 2 Comparison of 15N chemical shift correction factors

Schwarzinger Tamiola Kjaergaard This Work Schwarzinger Tamiola Kjaergaard This Work

i - 1 i - 1 i - 1 i - 1 i ? 1 i ? 1 i ? 1 i ? 1

Ala 0 0 0 0 0 0 0 0

Arg 2.19 2.55 2.41 2.4 0.19 -0.06 0.03 -0.1

Asn 1.44 1.34 1 1.3 0.07 -0.22 -0.4 0

Asp 1.43 1.32 0.84 1.3 0.13 -0.37 -0.17 -0.4

Cys 3.64 3.74 3.35 3.3 0.07 0.79 0.01 -0.6

Gln 2.19 2.34 2.25 2.0 0.19 -0.08 -0.14 -0.3

Glu 2.08 1.87 1.82 1 0.13 -0.10 -0.17 -0.3

Gly 0.57 0.64 0.16 0.6 0.33 0.00 -0.18 -0.1

His 2.25 2.40 2.22 1.7 -0.22 -0.22 -0.46 -0.4

Ile 5.44 4.84 5.42 3.1 0.19 -0.16 0.11 0.3

Leu 1.62 1.47 1.61 1.8 0.19 -0.39 -0.3 -0.4

Lys 2.14 1.95 2.4 2 0.13 0.07 -0.07 -0.4

Met 2.14 2.05 2.2 2 0.13 -0.14 -0.18 -0.4

Phe 3.35 2.88 2.44 2.4 -0.16 -0.48 -0.59 -0.6

Pro 1.44 1.21 1.22 1.2 0.01 1.08 1.29 1.2

Ser 3.12 2.94 2.46 2.9 0.3 -0.05 0.03 0

Thr 3.35 3.32 3.13 2.7 0.3 0.08 0.09 -0.2

Trp 3.76 1.43 2.3 2.0 0.07 -0.27 -0.37 -0.3

Tyr 3.58 3.37 2.64 2.6 -0.1 -0.38 -0.54 -0.5

Val 4.91 5.15 5.08 4.5 0.19 -0.04 0.18 0.1

i - 2 i - 2 i - 2 i - 2 i ? 2 i ? 2 i ? 2 i ? 2

Ala 0 0 0 0 0 0

Arg 0.09 0.39 0.4 0.06 -0.04 -0.4

Asn -0.02 -0.55 -0.7 -0.06 -0.03 0

Asp -0.14 -0.79 -0.4 0 0.04 -0.4

Cys 0.15 0.14 -0.2 0.06 -0.05 0.1

Gln 0.09 0.21 0.1 0.06 0 0.1

Glu 0.03 0.07 0.1 0.06 0.02 0.1

Gly 0.15 -0.24 -0.3 0.12 -0.02 0.2

His 0.32 0.16 0.7 0 -0.07 -0.2

Ile 0.15 0.86 0.6 -0.06 -0.07 0.4

Leu 0.09 0.09 0.2 0.06 0.04 0

Lys 0.09 0.38 0.1 0.06 -0.04 0

Met 0.09 0.23 0.2 0.06 0.06 -0.2

Phe -0.31 0.12 0.3 -0.06 0.21 0

Pro -0.02 0.13 0.1 -0.06 -0.09 -0.2

Ser -0.02 -0.41 -0.1 0.06 0.01 0.9

Thr 0.03 0.22 0 0.06 -0.02 -0.1

Trp -0.49 -0.55 -0.2 0.12 -0.07 -0.2

Tyr -0.37 0.08 0.3 -0.12 0.2 -0.1

Val 0.09 0.84 0.6 -0.12 -0.08 -0.1

J Biomol NMR (2013) 55:201–209 205

123



Gln (Kjaergaard and Poulsen 2011) or Xxx for Gly (Sch-

warzinger et al. 2001; Tamiola et al. 2010). This was done

by subtracting the Ala for Gln or Ala for Gly correction

factor from each published correction factor.

There are some consistencies in the various sets, such as

the i - 1 factors (A4 differences) being the most signifi-

cant, and i ? 2 factors (A1 differences) being very small.

Also, the same i - 2 factors (aromatic amino acids) which

Table 3 Comparison of 1H chemical shift correction factors

Schwarzinger Tamiola Kjaergaard This Work Schwarzinger Tamiola Kjaergaard This Work

i - 1 i - 1 i - 1 i - 1 i ? 1 i ? 1 i ? 1 i ? 1

Ala 0 0 0 0 0 0 0 0

Arg 0.08 0.16 0.12 0.14 0.03 0.02 0.03 0.09

Asn 0.06 0.04 0.1 0.01 0.02 0.03 0.07 0.01

Asp 0.07 -0.01 -0.05 -0.02 0.02 0.05 0.05 -0.02

Cys 0.13 0.21 0.15 0.2 0.03 0.43 0.07 0.01

Gln 0.08 0.14 0.1 0.08 0.03 0.04 0.04 -0.01

Glu 0.08 0.09 0.08 0.07 0.02 0.04 0.03 -0.02

Gly -0.07 -0.09 -0.11 -0.07 0.05 0.06 0.07 0.01

His 0.13 0.05 -0.02 0.2 0.01 -0.08 0.03 0.01

Ile 0.1 0.16 0.13 0.12 -0.01 -0.02 0.01 -0.02

Leu 0.07 0.02 0.01 0.06 0.02 -0.03 0.04 -0.05

Lys 0.07 0.09 0.02 0.05 0.02 0.00 0.02 -0.09

Met 0.08 0.12 0.06 0.09 0.03 -0.01 -0.12 -0.01

Phe 0.03 -0.01 -0.17 -0.05 -0.07 -0.08 0.01 -0.08

Pro 0.12 0.20 0.18 0.09 -0.13 0.03 0.03 0.02

Ser 0.09 0.14 0.08 0.12 0.02 0.05 -0.01 0.04

Thr 0.07 0.12 0.08 0.05 0.05 0.10 0.07 0.04

Trp -0.03 -0.64 -0.43 -0.33 -0.08 0.09 0.02 -0.09

Tyr 0.02 -0.14 -0.21 -0.09 -0.06 -0.04 0.02 -0.08

Val 0.1 0.17 0.14 0.17 0 0.00 0.01 0.01

i - 2 i - 2 i - 2 i - 2 i ? 2 i ? 2 i ? 2 i ? 2

Ala 0 0 0 0 0 0

Arg 0.04 0.08 0.04 0.01 0 -0.03

Asn 0.03 -0.03 0.06 0 0 0

Asp 0 -0.03 -0.08 -0.01 0 -0.01

Cys 0.03 0.02 0 0.01 -0.01 0

Gln 0.04 0.07 0.01 0 0 0

Glu 0.03 0.04 -0.01 0 0 -0.01

Gly 0.1 0.07 -0.01 0.01 0.01 0.01

His 0.1 0.09 0.13 0 -0.01 0.01

Ile 0.01 0.08 -0.02 0 -0.03 -0.02

Leu 0.02 0 -0.04 0.01 0 -0.02

Lys 0.04 0.07 0 0.01 0 -0.06

Met 0.04 0.05 0.02 0.01 -0.01 0

Phe -0.27 -0.05 -0.11 -0.02 -0.01 -0.02

Pro -0.02 0.04 0.03 -0.03 -0.02 -0.11

Ser 0.02 -0.06 -0.05 0.01 0.01 0.01

Thr 0.04 0.03 -0.03 0.11 0 -0.01

Trp -0.52 -0.29 -0.29 -0.07 -0.04 -0.06

Tyr -0.32 -0.08 -0.13 -0.03 -0.01 -0.04

Val 0.02 0.09 0.03 0 -0.03 0.01
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are large in our set are frequently large in other sets.

However, there are significant variations in the magnitudes

of corrections; this is perhaps not surprising as the refer-

ence amino acids vary (Ala vs. Gly vs. Gln) and some

correction factors are based on urea denaturation and others

on intrinsically disordered regions. There is then reason to

think that for our applications an alanine reference amino

acid may be better than a glycine reference amino acid and

that correction factors derived from urea denatured data

would work best.

A prediction tool was written in both the C programing

language and as a Perl script using the correction factors

derived from our urea denatured data on alanine penta-

peptides and reference chemical shifts taken from each

central amino acid in those peptides. In the Perl script, the

user is able to choose a correction table for any one of the

sets discussed using the published parameters and reference

amino acid shifts. One can argue that average random coil

shifts would provide a more appropriate set of reference

shifts for applications to intrinsically disordered proteins

and we have provided this as an option in our own cor-

rection tables. We have also allowed an option of using just

i ± 1 corrections or including i ± 2 as well. Input to the

program is simply a file with the amino acid sequence and a

correction factor table, both selected by entry of file names

on the command line calling the program. The output is a

predicted set of chemical shifts for each amino acid in the

sequence. Referencing is a principle source of variation in

application to any protein. We have chosen to reference

proton shifts to DSS in 8 M urea, pH 2.5. Nitrogen shifts

are calculated indirectly with the 1H resonance of DSS

referenced to zero ppm. The tool is available from our

website at http://tesla.ccrc.uga.edu/software/.

Discussion

A convenient test of our chemical shift prediction tool is

provided by data from the literature: a set of ubiquitin

crosspeaks for a 1H–15N HSQC spectrum taken in 8 M urea

and assigned using conventional double and triple reso-

nance strategies (Peti et al. 2001). Figure 1 is a superpo-

sition of experimental and predicted crosspeaks in which

referencing has been adjusted to minimize deviations

between the two sets. The agreement is reasonable in the

sense that the distribution of crosspeaks is similar. Some

clustering in horizontal bands likely reflects the more

substantial contribution of the central amino acid type to
15N shifts as compared to amino acid type contributions to
1H shifts. This may also contribute to the greater accuracy

of shift prediction for 15N shifts compared to 1H shifts, for

which respective RMSDs of 0.99 and 0.09 ppm translate to

percentages of chemical shift ranges of 5 and 12 %. In

Fig. 1, where lines connect predicted and experimental

shifts, it is clear that only a few of the outliers could be

assigned with any confidence using just chemical shift

prediction. Ellipses are drawn at ±1 standard deviation for

the few cases where this can be done.

For our anticipated application to sparsely labeled pro-

teins the percentage of unambiguous assignments should be

higher. Average percentages for RMSDs relative to range

increase when grouping predictions by central amino acid

type (27 and 25 %). But if only a single type of amino acid

were labeled, and distribution among types were uniform,

one would expect on average only 4 crosspeaks for an 80

amino acid protein. Spreading the four peaks randomly

over the range of chemical shifts, one would expect about

an 80 % chance of all four being separated by at least one

RMSD and of the ambiguous cases, more than a 90 %

chance that only one pair would have an ambiguous

assignment. For larger proteins assignments will be less

complete, but there are other sources of information that

can remove ambiguities, for example, a simple NOESY-

HSQC spectrum of the denatured protein of interest. NOE

peaks in a denatured protein typically connect a given
15N–1H crosspeak to the alpha and beta proton shifts of the

i - 1 residue and allow assignment of the i - 1 residue to

a class of amino acids (long chain, alanine, single methy-

lene etc.) (Peti et al. 2001). This would further reduce

ambiguities.

Comparison of the quality of prediction using our set of

correction factors to the quality using previous sets is

useful. One comparison is presented in Fig. 2 in which we

show correlations between experimental and predicted

Fig. 1 Simulated 1H–15N HSQC spectrum comparing experimental

(?) and predicted (O) crosspeaks for ubiquitin in 8 M in urea.

Experimental data are from Peti et al. (2001). Only residues 6–74 are

included to minimize end effects. Glycine 47 was eliminated as an

extreme outlier in all predictions. Ellipses are drawn for two cases

where definitive assignments can be made. Ellipse axes are two

standard deviations in each dimension
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15N and 1H amide shifts for our set and the Schwarzinger

set which is also based on low pH urea denatured pen-

tapeptides, but using glycine rather than alanine for

flanking residues. The predictions in both cases are fairly

good for 15N shifts (R2 values of 0.94 and 0.93 for our set

and the Schwarzinger set respectively). The largest vari-

ations are for 1H shifts. Here our predictions show a

small, but significant advantage (R2 values of 0.59 and

0.45 ppm respectively). That correlations are not as good

for amide 1H chemical shifts using either set is not sur-

prising. 1H chemical shifts have been notoriously difficult

to predict, likely because of substantial solvent and

hydrogen bonding effects and the importance of long

range effects in 1H chemical shifts. That our predictions

are better suggests that the choice of Ala as a represen-

tative amino acid is better than Gly, especially as both the

Schwarzinger set and our set use identical denaturing

conditions.

Comparisons to other sets are not plotted, but the trend

is the same. 15N R2 values for the Tamiola and Kjaergaard

sets are 0.94 and 0.96 respectively, both very good. 1H R2

values for the Tamiola and Kjaergaard sets are 0.33 and

0.47 respectively. The fact that the Kjaergaard set does

fairly well may reflect the importance of choosing a good

representative amino acid (their choice was Gln). The fact

that neither set does quite as well as ours on amide proton

predictions for urea denatured ubiquitin may simply reflect

that these sets were not based exclusively on urea dena-

tured peptides or proteins and were primarily intended for

application to intrinsically disordered regions of proteins.

In summary, we have produced a piece of prediction

software especially tailored to predicting HSQC spectra of

denatured proteins. It shows a small, but significant,

improvement over existing software for at least an appli-

cation to a urea denatured test set. Direct applications are

anticipated for emerging assignment strategies that corre-

late native HSQC spectra of sparsely labeled proteins with

spectra of their denatured counterparts and rely on the ease

of assignment of the denatured spectra. Additional appli-

cations may be found in the study of intrinsically disor-

dered proteins where it joins a list of similarly based

prediction software.
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